
Pi

Jun 15, 2023

Contents

1 Installation 3

2 Example 5

3 Contributing 7

4 The User Guide 9
4.1 Types . 9
4.2 Changelog . 13

Index 15

i

ii

Pi

Command-line tool for managing containerized environments. Helps you build nice and unique CLI for your project,
manage containers, images and services.

Licensed under BSD-3-Clause license. See LICENSE.txt

Project CLI means that you can create nested structure of commands, which will use containers (Docker) to run and
services (e.g. PostgreSQL) to perform some complex tasks.

Managing images means that you can define hierarchical images structure and Pi will build them on demand, for
example when you call a command, which require some images to run, which are not built yet. You don’t have to
assign versions (tags) for these images yourself, Pi will use hashing algorithm to automatically create them.

Managing services means that you can specify, that some services should be started before running a command. Or
you can manually start and stop services.

Contents 1

Pi

2 Contents

CHAPTER 1

Installation

Pi requires Python 3.5 or higher. You can install Pi directly into your system packages, it has zero dependencies, so it
can be uninstalled without leaving any traces in your system:

$ pip3 install pi-env

3

Pi

4 Chapter 1. Installation

CHAPTER 2

Example

Example pi.yaml file:

- !Meta
namespace: foo
description: |
Project command-line interface

- !Service
name: pg
network-name: postgres
image: !DockerImage postgres:10-alpine

- !Image
name: test
from: !DockerImage python:3.6-alpine
repository: localhost/foo/test
tasks:
- run: pip3 install --no-deps --no-cache-dir -r {{reqs}}
reqs: !File requirements.txt

- !Command
name: test
image: test
requires: [pg]
description: Run py.test
params:
- !Argument {name: tests, default: ''}
run: py.test {{tests}}

If you call pi test, Pi will build test image if needed and will make sure that pg service is running, which is
required to run tests.

This pg service will be available for the tests at postgres:5432 address. Both command pi test and pg service
will be running inside containers, which will be in the same unique network, automatically created for specified foo
namespace.

5

Pi

Here is how your project will be looking in the shell:

$ pi
Usage: pi [OPTIONS] COMMAND [ARGS]...

Project command-line interface

Options:
--debug Run in debug mode
--help Show this message and exit.

Core commands:
+ image Images creation and delivery
+ service Services status and management

Custom commands:
test Run py.test

You can see list of all defined images:

$ pi image -l
Image name Docker image Size Versions

-------------- ------------------------------- -------- ----------
XXX test localhost/foo/test:4efe5a0454a9 88.58 MB 1

You also can see status of all defined services:

$ pi service -s
Service name Status Docker image
-------------- -------- ------------------
pg running postgres:10-alpine

And of cause you can run your commands:

$ pi test
...............................
31 passed in 0.35 seconds

6 Chapter 2. Example

CHAPTER 3

Contributing

Run python -m pi test and python -m pi lint in order to test and lint your changes before submitting
your pull requests.

7

Pi

8 Chapter 3. Contributing

CHAPTER 4

The User Guide

4.1 Types

Pi uses YAML format and it’s tagged values feature to assemble types defined here into complex structure, which will
describe your project’s CLI and environment.

pi.yaml - is a list of these top-level types: Meta, Service, Image and Command. Their order is not significant.

class Meta
Project-specific settings

- !Meta:
namespace: example
description: |

This is an example project

Parameters

• namespace – Name, used to namespace such things like network, to make them unique
and isolated for every project

• description – Description for a project, which will be seen when users will run pi
--help command

class DockerImage
Reference to a name of the Docker image

Takes single argument - image name. Image name should include repository name and tag:

!DockerImage "python:3.6-alpine"

class Image
Defines how to build and distribute an image

9

http://yaml.org/spec/

Pi

- !Image
name: env
repository: my.registry/project/name
from: base
description: "Project environment"
tasks:
- run: cp {{config}} /etc

config: !File "config.py"

Parameters

• name – short name of the image, used to reference it within this config/project

• repository – full name of the image. This name is used to distribute image using reg-
istries

• from – base image, to build this one from. It is a name of the other image defined in this
config, or a regular external Docker image

• description – description of this image

• tasks – list of tasks, used to build this image

Each task represents a shell command to run. This command can be a simple string:

tasks:
- run: mkdir /etc/app

Or a template with parameters. Jinja2 is used as a template language:

tasks:
- run: pip install {{packages|join(" ")}}
packages:
- flask
- sqlalchemy

You can also use some special handy directives:

tasks:
- run: sh -c {{install_sh}}
install_sh: !Download "https://some.host/install.sh"

Pi will download this file for you and it will be available inside container during build process. All you need it to
describe what you want to do with already downloaded file. So you don’t have to install curl with ca-certificates
into container and remove it in the end.

class Download
Directive to transfer downloaded on the host machine file into container

Takes single argument - url:

tasks:
- run: sh -c {{install_sh}}
install_sh: !Download "https://some.host/install.sh"

class File
Directive to transfer file from the host machine into container

Takes single argument - local file path:

10 Chapter 4. The User Guide

Pi

tasks:
- run: cp {{config}} /etc/config.yaml
config: !File "config.yaml"

class Bundle
Directive to transfer directory from the host machine into container

Takes single argument - local directory path:

tasks:
- run: cd {{src}} && python setup.py install
src: !Bundle "src"

class Service
Defines a service

- !Service
name: pg
network-name: postgres
image: !DockerImage postgres:10-alpine

Parameters

• name – name of this service

• image – image, used to run this service

• volumes – list of volumes to mount, defined using LocalPath or NamedVolume types

• ports – list of exposed ports, defined using Expose type

• environ – map of environment variables

• requires – list of service names; Pi will ensure that these services are running before
starting this service

• exec – service’s entry point

• args – args passed to the service’s entry point

• network-name – host name of the container, by default network-name will be equal
to the name of the service

• description – description, used to help users when they run pi service --help
command, which will list all defined services and their descriptions

class Command
Defines a command with parameters, to run inside configured container and environment

- !Command
name: test
image: test
requires: [pg]
description: Run py.test
params:
- !Argument {name: tests, default: ''}
run: py.test {{tests}}

Parameters

4.1. Types 11

Pi

• name – name of this command

• image – image, used to run this command

• run – command to run inside container

• params – list of command-line arguments of type Argument and options of type Option

• volumes – list of volumes to mount, defined using LocalPath or NamedVolume types

• ports – list of exposed ports, defined using Expose type

• environ – map of environment variables

• requires – list of service names; Pi will ensure that these services are running

• network-name – make this container available to the other containers in current names-
pace under specified host name

• description – description, used to help users, when they run pi [command]
--help command

class Argument
Defines command’s argument

Parameters

• name – argument’s name

• type – argument’s type - str (default), int or bool

• default – argument’s default value

class Option
Defines command’s option

Parameters

• name – option’s name

• type – option’s type - str (default), int or bool

• default – option’s default value

class LocalPath
Specifies file or directory from the local file system to mount

volumes:
- !LocalPath {from: "config.yaml", to: "/etc/config.yaml"}

Parameters

• from – Local path

• to – Path inside container

• mode – RO (default) or RW

class NamedVolume
Specifies existing named volume to mount

...
volumes:
- !NamedVolume {name: db, to: "/var/db/data", mode: !RW }

12 Chapter 4. The User Guide

Pi

Parameters

• name – Volume’s name

• to – Path inside container

• mode – RO (default) or RW

class RO
Defines read-only mode

class RW
Defines read/write mode

class Expose
Defines port mapping to expose

...
ports:
- !Expose {port: 5000, as: 5000, addr: 0.0.0.0}

Parameters

• port – port inside container

• as – port outside container

• addr – network interface for binding, 127.0.0.1 by default

• proto – protocol, tcp by default

4.2 Changelog

4.2.1 0.1.1

• Added “pi image info” command

• Refactored “pi image” and “pi service” UI

• Removed dumb-init usage in favor to Docker’s own init process

• Fixed !Bundle task to use proper relative paths

• Added !File task

• Services can now require other services

• Added special naming convention for local-only images

4.2.2 0.1.0

• Initial release

4.2. Changelog 13

Pi

14 Chapter 4. The User Guide

Index

A
Argument (built-in class), 12

B
Bundle (built-in class), 11

C
Command (built-in class), 11

D
DockerImage (built-in class), 9
Download (built-in class), 10

E
Expose (built-in class), 13

F
File (built-in class), 10

I
Image (built-in class), 9

L
LocalPath (built-in class), 12

M
Meta (built-in class), 9

N
NamedVolume (built-in class), 12

O
Option (built-in class), 12

R
RO (built-in class), 13
RW (built-in class), 13

S
Service (built-in class), 11

15

	Installation
	Example
	Contributing
	The User Guide
	Types
	Changelog

	Index

